반도체(52)
-
반도체 8대 공정 - Doping 공정 (4)
지난 시간의 내용과 이어집니다. SPR에 의한 방법은 SIMS 측정법과는 다르게 전기적인 저항을 측정하여 도펀트의 농도 프로파일을 얻어냅니다. 도핑된 실리콘을 표면과 매우 작은 각도(~1도 수준)로 갈아주게 되면 깊이 방향으로 경사진 면이 나타나게 됩니다. 이 경사진 면을 일정한 거리만큼 이동하면서 2개의 탐침으로 저항을 측정하게 됩니다. 측정된 깊이에 따른 전기 저항은 저항-비저항-도펀트 농도 실험치에 의한 상관관계를 통해 깊이에 따른 도펀트 농도로 환산됩니다. 표면으로부터 작은 각도로 연마하는 이유는 깊이 방향으로 정밀하게 측정을 하기 위함이지만 최근의 나노 수준의 도핑 깊이를 커버하기에는 무리가 있습니다. 하지만 SIMS와는 다르게 전기저항 측정을 통해 결과를 얻어내기 때문에 활성화된 도펀트만 프로..
2023.06.01 -
반도체 8대 공정 - Doping 공정 (3)
지난 시간에 이어서 Doping 공정의 확산 공정 방식에 대하여 더 알아보겠습니다. 확산 공정은 실리콘 단결정의 손상 없이 P형, N형 반도체를 형성할 수 있다는 장점이 있지만, 정확한 불순물 양을 조절하기 힘들고 Junction 깊이를 정확히 조절하기 힘들다는 문제점이 있습니다. 특히 불순물 농도가 소스/드레인과 같이 ~10^15/cm^2 정도로 고농도일 때는 농도 조절에 크게 문제가 없지만, 10^11~10^12/cm^2 정도로 낮은 농도를 정확하게 조절해야 하는 문턱 전압 조절용 도핑은 불가능합니다. 가장 문제가 되는 것은 Drive-in 공정 진행 시 등방성으로 불순물의 확산이 진행되는데, 수평적으로 확산이 진행되면 최근에 미세화된 소자를 구현하기가 어려워집니다. 과거에는 소자의 크기가 컸기 때문..
2023.05.29 -
반도체 8대 공정 - Doping 공정 (2)
지난 시간의 개요에 이어서, 오늘은 Doping 공정에 대하여 자세히 알아보겠습니다. 확산 원리 확산 공정은 불순물을 포함한 가스(B2H6, PH3, AsH3 등)나 액체(POCl3), 고체(BN) 등을 확산원(Diffusion source)으로 하여 후속 열처리 과정을 통해 실리콘 내부로 확산(Diffusion)시키는 공정을 사용합니다. 확산의 기본 개념은 농도 차이에 의하여 물질이 농도가 높은 곳에서 낮은 곳으로 이동하는 현상인데, 가장 중요한 파라미터는 농도의 차이가 얼마나 나는지와 온도, 그리고 시간으로 볼 수 있습니다. 두 물질이 접합을 이루고 있는 상태에서 농도 차이에 의한 확산이 일어나게 됩니다. 접합면에서부터 양 방향으로 확산이 일어나게 되고 시간이 흐르면서 확산이 계속 진행되어 이동하는 ..
2023.05.25 -
반도체 8대 공정 - Doping 공정 (1)
이제 반도체 공정의 거의 끝을 향해 달려가고 있습니다. 오늘부터는 Doping 공정에 대하여 알아보겠습니다. 1. Doping 공정 1) 확산 공정 : 불순물을 후속 열공정을 통해 실리콘 내부로 확산시키는 공정 2) 이온주입 공정 : 입자가속기의 원리를 이용하여 불순물을 주입하는 공정 2. 동작, 특성 1) 확산 공정 방식 (1) Pre-deposition : 도펀트를 실리콘의 표면 쪽에 증착하듯이 많은 양을 주입하는 것 (2) Drive-in : 주입된 도펀트가 소자의 깊이 방향으로 확산되어 계산된 거리만큼 들어가게 되고, 표면으로부터 깊이 방향으로 도펀트 농도의 분포를 가지게 됨 2) 이온주입 공정 : 원하는 이온을 정확한 에너지로 정확한 양을 웨이퍼상에 마스크로 가려지지 않은 부위에 주입할 수 있어..
2023.05.22 -
반도체 8대 공정 - 산화공정 (Oxidation) (6)
지난 시간에 이어, 웨이퍼 크기가 증가함에 따라 변화하는 장치 구조에 대하여 알아보겠습니다. 사용하는 웨이퍼 크기가 300mm로 커짐에 따라 트레이에 가해지는 무게가 커져 열산화 공정을 진행할 때 석영 튜브의 변형이 우려됩니다. 이러한 문제를 극복하기 위해 석영 대신 SiC 튜브 및 트레이를 사용하고 장비 구조도 수직 방식의 열산화장치(Furnace)로 변경되었습니다. 수직형의 경우에는 트레이 자체가 회전이 가능하기 때문에 온도 및 가스의 공급이 균일하여 산화막의 균일도 역시 수평형 대비 유리하고, 가스의 공급 측면에서도 노즐을 여러 개 사용하여(Multi-nozzle) 상부, 중부, 하부에 개별적으로 공급이 가능해 상부에서부터 하부까지 모든 공정이 진행된 웨이퍼에서 균일한 두께의 산화막 확보가 가능합니..
2023.05.18 -
반도체 8대 공정 - 산화공정 (Oxidation) (5)
지난 시간에 이어 열 산화막 성장에 실리콘 결정 방향이 영향을 미치는 이유에 대하여 알아보겠습니다. 실리콘의 경우 (100) 면 대비 (111) 면이 산화 속도가 더 빠릅니다. 그 이유는 면밀도의 개념으로 설명할 수 있는데, (100) 면의 밀도 6.8 * 10^11 /cm^2보다 (111) 면의 밀도 11.8 * 10^14 /cm^2가 두 배 가까이 높습니다 따라서 반응이 일어날 확률이 (111) 면에서 더 높게 되어 성장 속도가 더 높습니다. 실리콘 결정 방향에 따른 산화 속도는 평면 형태의 소자 구조에서는 크게 문제가 되지 않지만, 실리콘의 다른 방향의 면이 드러난 상태에서 산화 공정을 진행할 경우 두께의 차이를 초래하게 됩니다. 예를 들어 트렌치 구조로 만든 후 벽면과 바닥면 등 방향이 다른 실리..
2023.05.15